Photochemical Dynamics Group

Prof. Jacques-E. Moser

http://photochemistry.epfl.ch
je.moser@epfl.ch

General area(s)
Physical chemistry

Research themes
The main objective of the group's research efforts is the understanding of the mechanisms and dynamics of electron transfer processes induced by light at solid | solid and solid | liquid interfaces found in solar energy conversion devices. Systems currently under study are photo-electrodes employed in dye-sensitized solar cells (DSC), solid polymer and dye films used in organic photovoltaics (OPV), as well as organic and hybrid nanostructured charge-transporting materials.

Methodology of work / instrumentation
Identification of reaction intermediates and quantification of the kinetics of photoinduced reactions are provided by the application of femtosecond-, picosecond- and nanosecond pulsed laser excitation, coupled to various fast optical spectroscopy and photo-thermal techniques. The time-resolution of laser equipments allows the probing of temporal domains extending from 10 fs to 1 s. All optical wavelengths in the UV, visible, NIR, and mid-IR spectral domains, from 300 nm to 10 µm, are employed. In addition, terahertz time-domain spectroscopy (THz-TDS) allows to studying the dynamics of low frequency vibrations in molecules, solvents, solids, and supramolecular systems, as well as charge carrier mobility and transport mechanisms.

Examples of MSc / PhD theses
- Jan C. Brauer, EPFL MSc thesis (2008) « THz-TDS and DC conductivity study of the ionic liquid 3-methyl-1-propylimidazolium iodide as a function of iodine concentration ».